Advertisements
Advertisements
प्रश्न
If cosA + cos2A = 1, then sin2A + sin4A = 1.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
∵ cosA + cos2A = 1
⇒ cosA = 1 – cos2A = sin2A ...[∵ sin2A + cos2A = 1]
⇒ cos2A = sin4A
⇒ 1 – sin2A = sin4A ...[∵ cos2A = 1 – sin2A]
⇒ sin2A + sin4A = 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Choose the correct alternative:
sec2θ – tan2θ =?
Choose the correct alternative:
Which is not correct formula?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A