Advertisements
Advertisements
प्रश्न
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
उत्तर
LHS = `sin theta/((cot theta + cosec theta))- sin theta/(( cot theta - cosec theta))`
=` sin theta { ((cot theta - cosec theta )-( cot theta + cosec theta ))/(( cot theta + cosec theta ) ( cot theta - cosec theta ))}`
=` sin theta { (-2 cosec theta)/(-1)} (∵ cosec^2 theta - cot^2 theta =1)`
=` sin theta . 2 cosec theta`
=`sin theta xx2xx1/ sin theta`
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Write the value of cosec2 (90° − θ) − tan2 θ.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
If cosθ = `5/13`, then find sinθ.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`