मराठी

`Sin Theta/((Cot Theta + Cosec Theta)) - Sin Theta /( (Cot Theta - Cosec Theta)) =2` - Mathematics

Advertisements
Advertisements

प्रश्न

`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`

उत्तर

LHS = `sin theta/((cot theta + cosec  theta))- sin theta/(( cot theta - cosec theta))`

      =` sin theta { ((cot theta - cosec  theta )-( cot  theta + cosec  theta ))/(( cot theta + cosec  theta )  ( cot  theta - cosec  theta ))}`

     =` sin theta { (-2 cosec  theta)/(-1)}    (∵ cosec^2  theta - cot^2  theta  =1)`

     =` sin theta . 2 cosec  theta`

    =`sin theta xx2xx1/ sin theta`

   = 2

   = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 23

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Write the value of cosec2 (90° − θ) − tan2 θ. 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


If cosθ = `5/13`, then find sinθ. 


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×