Advertisements
Advertisements
प्रश्न
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
उत्तर
LHS = `sin theta/((cot theta + cosec theta))- sin theta/(( cot theta - cosec theta))`
=` sin theta { ((cot theta - cosec theta )-( cot theta + cosec theta ))/(( cot theta + cosec theta ) ( cot theta - cosec theta ))}`
=` sin theta { (-2 cosec theta)/(-1)} (∵ cosec^2 theta - cot^2 theta =1)`
=` sin theta . 2 cosec theta`
=`sin theta xx2xx1/ sin theta`
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Eliminate θ if x = r cosθ and y = r sinθ.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`