Advertisements
Advertisements
प्रश्न
Eliminate θ if x = r cosθ and y = r sinθ.
उत्तर
x = r cosθ and y = r sinθ
Squaring on both terms,
x2 = r2cos2θ ...(1)
y2 = r2sin2θ ...(2)
Add (1) + (2).
x2 + y2 = r2sin2θ + r2cos2θ
x2 + y2 = r2(sin2θ + cos2θ)
But we know, (sin2θ + cos2θ) = 1
∴ x2 + y2 = r2
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
sec4 A − sec2 A is equal to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.