Advertisements
Advertisements
प्रश्न
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
उत्तर
Given that, tan A = n tan B and sin A = m sin B.
`=> n = tanA/tanB` and `m = sinA/sinB`
∴ `(m^2 - 1)/(n^2 - 1) = ((sinA/sinB)^2 - 1)/((tanA/tanB)^2 - 1)`
= `(sin^2A/sin^2B - 1/1)/(tan^2A/(tan^2B) - 1)`
= `((sin^2A - sin^2B)/sin^2B)/((tan^2A - tan^2B)/tan^2B)`
= `((sin^2A - sin^2B)/tan^2B)/((tan^2A - tan^2B)/sin^2B)`
= `((sin^2A - sin^2B)sin^2B)/((sin^2A/cos^2A-sin^2B/cos^2B)cos^2Bsin^2B)`
= `(sin^2A - sin^2B)/(((sin^2A.cos^2B - sin^2B.cos^2A)/(cos^2A.cos^2B)) cos^2B)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A.cos^2B - sin^2B.cos^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A(1 - sin^2B) - sin^2B (1 - sin^2A))`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A - sin^2A.sin^2B - sin^2B + sin^2B.sin^2A)`
= `((sin^2A - sin^2B)cos^2A)/(sin^2A -sin^2B)`
= cos2 A
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`