Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
उत्तर
We have to prove
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Consider the LHS.
`(cosec θ − sec θ) (cot θ − tan θ) = (1/sin theta - 1/cos theta)(cos theta/sin theta - sin theta/cos theta)`
`= ((cos theta - sin theta)/(sin theta cos theta))((cos^2 theta - sin^2 theta)/(sin theta cos theta))`
`= (cos theta - sin theta)/(sin theta cos theta) ((cos theta + sin theta)(cos theta - sin theta))/(sin theta cos theta)`
`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`
Now, consider the RHS.
`(cosec θ + sec θ) ( sec θ cosec θ − 2) = (1/sin theta + 1/cos theta) (1/cos theta 1/sin theta - 2)`
`= ((cos theta + sin theta)/(sin theta cos theta))((1- 2sin theta cos theta)/(sin theta cos theta))`
`= ((cos theta + sin theta))/(sin theta cos theta) ((cos^2 theta + sin^2 theta - 2 cos theta sin theta))/(sin theta cos theta)`
`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`
∴ LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of cos1° cos 2°........cos180° .
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.