हिंदी

Prove the Following Trigonometric Identities. (Cosec θ − Sec θ) (Cot θ − Tan θ) = (Cosec θ + Sec θ) ( Sec θ Cosec θ − 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

उत्तर

We have to prove

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

Consider the LHS.

`(cosec θ − sec θ) (cot θ − tan θ) = (1/sin theta - 1/cos theta)(cos theta/sin theta - sin theta/cos theta)`

`= ((cos theta - sin theta)/(sin theta cos theta))((cos^2 theta - sin^2 theta)/(sin theta cos theta))`

`= (cos theta - sin theta)/(sin theta cos theta) ((cos theta + sin theta)(cos theta - sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

Now, consider the RHS.

`(cosec θ + sec θ) ( sec θ cosec θ − 2) = (1/sin theta + 1/cos theta) (1/cos theta 1/sin theta - 2)`

`= ((cos theta + sin theta)/(sin theta cos theta))((1- 2sin theta cos theta)/(sin theta cos theta))`

`= ((cos theta + sin theta))/(sin theta cos theta) ((cos^2 theta + sin^2 theta - 2 cos theta sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

∴ LHS = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 61 | पृष्ठ ४६

संबंधित प्रश्न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of cos1° cos 2°........cos180° .


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×