Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
उत्तर
We need to prove `(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Using the property `1 + tan^2 theta = sec^2 theta` we get
`(1 + tan^2 A)+(1 + 1/tan^2 A) = sec^2 A = ((tan^2 A + 1)/tan^2 A)`
`= sec^2 A + (sec^2 A)/(tan^2 A)`
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get
`sec^2 A + ((sec^2 A)/(tan^2 A)) = 1/cos^2 A + ((1/cos^2 A)/((sin^2 A)/(cos^2 A)))`
`= 1/cos^2 A + (1/cos^2A xx cos^2 A/sin^2 A)`
` = 1/cos^2 A + 1/sin^2 A`
`= (sin^2 A + cos^2 A)/(cos^2 A(sin^2 A))`
Further, using the property, `sin^2 theta + cos^2 theta = 1` we get
`(sin^2 A + cos^2 A)/(cos^2 A(sin^2 A)) = 1/(cos^2 A (sin^2 A))`
`= 1/((1 - sin^2 A)(sin^2 A))` (using `cos^2 theta = 1 - sin^2 theta`)
`= 1/(sin^2 A - sin^4 A)`
Hence proved
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
cos4 A − sin4 A is equal to ______.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`