Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
उत्तर
L.H.S. = `(sinAtanA)/(1 - cosA)`
= `(sinAtanA)/(1 - cosA) xx (1 + cosA)/(1 + cosA)`
= `(sinAtanA(1 + cosA))/(1 - cos^2A)`
= `(sinA sinA/cosA(1 + cosA))/sin^2A`
= `(1 + cosA)/cosA`
= `1/cosA + cosA/cosA`
= sec A + 1
= 1 + sec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Simplify : 2 sin30 + 3 tan45.
What is the value of (1 + cot2 θ) sin2 θ?
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.