Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
उत्तर
L.H.S. = `sinA/(1 + cosA)`
= `sinA/(1 + cosA) xx (1 - cosA)/(1 - cosA)`
= `(sinA(1 - cosA))/(1 - cos^2A)`
= `(sinA(1 - cosA))/sin^2A`
= `(1 - cosA)/sinA`
= `1/sinA - cosA/sinA`
= cosec A – cot A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`