Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
उत्तर
L.H.S. = `sqrt((1 - cosA)/(1 + cosA))`
= `sqrt((1 - cosA)/(1 + cosA) xx (1 - cosA)/(1 - cosA))`
= `sqrt((1 - cosA)^2/(1 - cos^2A))`
= `sqrt((1 - cosA)^2/(sin^2A)`
= `(1 - cosA)/sinA`
= `1/sinA - cosA/sinA`
= cosec A – cot A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ