Advertisements
Advertisements
प्रश्न
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
उत्तर
L.H.S. = x2 + y2 + z2
= (r sin A cos B)2 + (r sin A sin B)2 + (r cos A)2
= r2 sin2 A cos2 B + r2 sin2 A sin2 B + r2 cos2 A
= r2 sin2 A (cos2 B + sin2 B) + r2 cos2 A
= r2 (sin2 A + cos2 A)
= r2 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S