हिंदी

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2 - Mathematics

Advertisements
Advertisements

प्रश्न

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2

योग

उत्तर

Given,

m = a sec A + b tan A and n = a tan A + b sec A

m2 – n= (a sec A + b tan A)2 – ( a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2ab sec A tan A – (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)

= sec2 A (a2 – b2) + tan2 A (b2 – a2)

= (a2 – b2) [sec2 A – tan2 A]

= (a2 – b2) [Since sec2 A – tan2 A = 1]

Hence, m2 – n2 = a2 – b2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Trigonometrical Identities - Exercise 21 (B) [पृष्ठ ३२७]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 21 Trigonometrical Identities
Exercise 21 (B) | Q 3 | पृष्ठ ३२७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×