Advertisements
Advertisements
प्रश्न
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
उत्तर
Given,
m = a sec A + b tan A and n = a tan A + b sec A
m2 – n2 = (a sec A + b tan A)2 – ( a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2ab sec A tan A – (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)
= sec2 A (a2 – b2) + tan2 A (b2 – a2)
= (a2 – b2) [sec2 A – tan2 A]
= (a2 – b2) [Since sec2 A – tan2 A = 1]
Hence, m2 – n2 = a2 – b2
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec2θ – tan2θ =?
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1