Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
sec2θ – tan2θ =?
विकल्प
0
1
2
`sqrt(2)`
उत्तर
1
1 + tan2θ = sec2θ
∵ sec2θ – tan2θ = 1.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If cosθ = `5/13`, then find sinθ.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
tan θ cosec2 θ – tan θ is equal to
sin2θ + sin2(90 – θ) = ?
If tan θ × A = sin θ, then A = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S