हिंदी

Choose the correct alternative: sec2θ – tan2θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

sec2θ – tan2θ =?

विकल्प

  • 0

  • 1

  • 2

  • `sqrt(2)`

MCQ

उत्तर

1

1 + tan2θ = sec2θ

∵ sec2θ – tan2θ = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (A)

संबंधित प्रश्न

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


 Write True' or False' and justify your answer  the following : 

The value of  \[\cos^2 23 - \sin^2 67\]  is positive . 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


If cosθ = `5/13`, then find sinθ. 


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


tan θ cosec2 θ – tan θ is equal to


sin2θ + sin2(90 – θ) = ?


If tan θ × A = sin θ, then A = ?


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×