Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
cot θ . tan θ = ?
विकल्प
1
0
2
`sqrt(2)`
उत्तर
1
cot θ. tan θ = `1/"tan θ"`. tan θ = 1.
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(sec^2 theta-1) cot ^2 theta=1`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
tan θ cosec2 θ – tan θ is equal to
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.