हिंदी

Write the Value of ` Cosec^2 (90°- Theta ) - Tan^2 Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 

उत्तर

`cosec ^2 (90°- theta )- tan^2 theta `

   =` sec^2 theta - tan^2 theta`
  = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 8

संबंधित प्रश्न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Find A if tan 2A = cot (A-24°).


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Choose the correct alternative:

cot θ . tan θ = ?


Prove that cot2θ × sec2θ = cot2θ + 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that sec2θ – cos2θ = tan2θ + sin2θ


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×