हिंदी

Prove that cot A1-tanA+tan A1-cotA = 1 + tan A + cot A = sec A . cosec A + 1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1

योग

उत्तर

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`

= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`

= `((cos "A")/(sin "A"))/((cos "A" -  sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" -  cos "A")/(sin "A"))`

= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`

= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`

= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`

= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")`  ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]

= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"`  ......(i)

= `(1 + sin"A" cos"A")/(sin"A" cos"A")`   .....[∵ sin2A + cos2A = 1]

= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`

= cosec A sec A + 1  .....(ii)

`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`

= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")`     ......[From (i)]

= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`

= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`

= tan A + 1 + cot A    ......(iii)

From (ii) and (iii), we get

`"cot  A"/(1  - tan "A") + "tan A"/(1 -  cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.4

संबंधित प्रश्न

Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


` tan^2 theta - 1/( cos^2 theta )=-1`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If `sec theta = x ,"write the value of tan"  theta`.


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If 1 – cos2θ = `1/4`, then θ = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×