Advertisements
Advertisements
प्रश्न
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
उत्तर
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`
= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`
= `((cos "A")/(sin "A"))/((cos "A" - sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" - cos "A")/(sin "A"))`
= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`
= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`
= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")` ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"` ......(i)
= `(1 + sin"A" cos"A")/(sin"A" cos"A")` .....[∵ sin2A + cos2A = 1]
= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`
= cosec A sec A + 1 .....(ii)
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`
= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")` ......[From (i)]
= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`
= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`
= tan A + 1 + cot A ......(iii)
From (ii) and (iii), we get
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
` tan^2 theta - 1/( cos^2 theta )=-1`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If `sec theta = x ,"write the value of tan" theta`.
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If 1 – cos2θ = `1/4`, then θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2