Advertisements
Advertisements
प्रश्न
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
उत्तर
L.H.S. = (cosec A – sin A) (sec A – cos A) × sec2 A
= `(1/sinA - sinA)(1/cosA - cosA) xx sec^2A` ...`{∵ cosec theta = 1/sintheta, sectheta = 1/costheta, 1 - sin^2theta = cos^2theta, 1 - cos^2theta = sin^2theta}`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA) 1/(cos^2A)`
= `(cos^2A)/(sinA)*(sin^2A)/(cosA)*1/(cos^2A)`
= `sinA/cosA`
= tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
`(sec^2 theta-1) cot ^2 theta=1`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`