Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
рдЙрддреНрддрд░
We have `(x/a sin theta - y/a cos theta ) =1`
Squaring both side, we have:
`(x/a sin theta - y/b cos theta )^2 = (1)^2`
⇒ `(x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - 2 x/a xx y/b sin theta cos theta ) = 1 .....(i)`
Again , `(x/a cos theta + y/b sin theta ) =1`
ЁЭСЖЁЭСЮЁЭСвЁЭСОЁЭСЯЁЭСЦЁЭСЫЁЭСФ ЁЭСПЁЭСЬЁЭСбтДО ЁЭСаЁЭСЦЁЭССЁЭСТ, ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб:
`(x/a cos theta + y/b sin theta )^2 = (1)^2`
`⇒ (x^2/a^2 cos^2 theta + y^2 /b^2 sin ^2 theta + 2 x/a xx y/b sin theta cos theta ) = ....(ii)`
Now, adding (i) and (ii), we get:
`(x^2/a^2 sin^2 theta + y^2 /b^2 cos^2 theta -2 x/a xx y/b sin theta cos theta ) + (x^2/a^2 cos^2 theta + y^2 / b^2 sin^2 theta + 2 x/a xx y/b sin theta cos theta)`
⇒`x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta + x^2 /a^2 cos^2 theta + y^2/b^2 sin^2 theta =2`
⇒`(x^2/a^2 sin^2 theta + x^2/a^2 cos^2 theta)+(y^2/b^2 cos^2 theta + y^2/b^2 sin ^2 theta ) =2`
⇒`x^2/a^2 (sin^2 theta + cos^2 theta ) + y^2/b^2 (cos^2 theta + sin^2 theta ) =2`
⇒`x^2/a^2 + y^2 /b^2 =2 [тИ╡ sin^2 theta + cos^2 theta =1]`
∴`x^2/a^2 + y^2/b^2 = 2`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
sec2θ – tan2θ =?
Choose the correct alternative:
cos 45° = ?
Prove that cot2θ × sec2θ = cot2θ + 1