Advertisements
Advertisements
प्रश्न
`sec theta (1- sin theta )( sec theta + tan theta )=1`
उत्तर
LHS = `sec theta ( 1- sin theta )(sec theta + tan theta)`
=` (sec theta - sec theta sin theta) ( sec theta + tan theta)`
=` (sec theta - 1/(cos theta) xx sin theta )(sec theta+tantheta)`
=` (sec theta - tan theta ) ( sec theta + tan theta)`
= `sec ^2 theta - tan ^2 theta`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that:
`cosA/(1 + sinA) = secA - tanA`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
\[\frac{x^2 - 1}{2x}\] is equal to
sec4 A − sec2 A is equal to
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ