Advertisements
Advertisements
प्रश्न
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
उत्तर
tan θ + cot θ = 2 ....[Given]
∴ (tan θ + cot θ)2 = 4 .....[Squaring both sides]
∴ tan2θ + 2tan θ.cot θ + cot2θ = 4 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ tan2θ + 2(1) + cot2θ = 4 ......[∵ tan θ ⋅ cot θ = 1]
∴ tan2θ + cot2θ = 4 – 2
∴ tan2θ + cot2θ = 2
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
\[\frac{x^2 - 1}{2x}\] is equal to
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that cot2θ × sec2θ = cot2θ + 1
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1