Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
उत्तर
LHS = `sin^8θ - cos^8θ`
= `(sin^4θ)^2 - (cos^4θ)^2`
= `(sin^4θ - cos^4θ)(sin^4θ + cos^4θ)`
= `(sin^2θ - cos^2θ)(sin^2θ + cos^2θ)(sin^4θ + cos^4θ)`
= `(sin^2θ - cos^2θ)(sin^4θ + cos^4θ)`
= `(sin^2θ - cos^2θ)((sin^2θ)^2 + (cos^2θ)^2 + 2sin^2θcos^2θ - 2sin^2θcos^2θ)`
= `(sin^2θ - cos^2θ)((sin^2θ + cos^2θ)^2 - 2sin^2θcos^2θ)`
= `(sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`sin^2 theta + 1/((1+tan^2 theta))=1`
Write the value of cosec2 (90° − θ) − tan2 θ.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ