Advertisements
Advertisements
प्रश्न
`sin^2 theta + 1/((1+tan^2 theta))=1`
उत्तर
LHS= `sin^2 theta + 1/((1+ tan^2 theta))`
=` sin^2 theta + 1/(sec^2 theta) (∵ sec^2 theta - tan^2 theta =1 )`
= `sin^2 theta + cos^2 theta`
= 1
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove that `cosA/(1+sinA) + tan A = secA`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Simplify : 2 sin30 + 3 tan45.
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
cot θ . tan θ = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?