हिंदी

`1+ (Cot^2 Theta)/((1+ Cosec Theta))= Cosec Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`

उत्तर

LHS =` 1+(cot^2 theta)/((1+ cosectheta))`

       =`1+((cosec^2 theta-1))/((cosectheta++1))    (∵ cosec^2 theta - cot^2 theta =1)`

      =`1+((cosectheta+1)(cosec theta-1))/((cosec theta +1))`

      =`1+ (cosec  theta -1)`

      =` cosec theta`

     =RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 8.1

संबंधित प्रश्न

Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×