Advertisements
Advertisements
प्रश्न
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
उत्तर
LHS =` 1+(cot^2 theta)/((1+ cosectheta))`
=`1+((cosec^2 theta-1))/((cosectheta++1)) (∵ cosec^2 theta - cot^2 theta =1)`
=`1+((cosectheta+1)(cosec theta-1))/((cosec theta +1))`
=`1+ (cosec theta -1)`
=` cosec theta`
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`