Advertisements
Advertisements
प्रश्न
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
उत्तर
LHS =` 1+(cot^2 theta)/((1+ cosectheta))`
=`1+((cosec^2 theta-1))/((cosectheta++1)) (∵ cosec^2 theta - cot^2 theta =1)`
=`1+((cosectheta+1)(cosec theta-1))/((cosec theta +1))`
=`1+ (cosec theta -1)`
=` cosec theta`
=RHS
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ