Advertisements
Advertisements
प्रश्न
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
उत्तर
L.H.S = `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)`
= `1/("cosec" theta)(cottheta + tantheta)` .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`
= sin θ (cot θ + tan θ)
= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`
= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`
= `sintheta (1/(sintheta costheta))` ......[∵ sin2θ + cos2θ = 1]
= `1/costheta`
= sec θ
= R.H.S
∴ `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
cosec4θ − cosec2θ = cot4θ + cot2θ
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
What is the value of (1 + cot2 θ) sin2 θ?
What is the value of 9cot2 θ − 9cosec2 θ?
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Find A if tan 2A = cot (A-24°).
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B