हिंदी

Prove that tan(90-θ)+cot(90-θ)cosecθ = sec θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ

योग

उत्तर

L.H.S = `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)`

= `1/("cosec"  theta)(cottheta + tantheta)`  .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`

= sin θ (cot θ + tan θ)

= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`

= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`

= `sintheta (1/(sintheta costheta))`   ......[∵ sin2θ  + cos2θ = 1]

= `1/costheta`

= sec θ

= R.H.S

∴ `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Choose the correct alternative:

cos θ. sec θ = ?


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×