Advertisements
Advertisements
प्रश्न
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
उत्तर
L.H.S = `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)`
= `1/("cosec" theta)(cottheta + tantheta)` .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`
= sin θ (cot θ + tan θ)
= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`
= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`
= `sintheta (1/(sintheta costheta))` ......[∵ sin2θ + cos2θ = 1]
= `1/costheta`
= sec θ
= R.H.S
∴ `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Choose the correct alternative:
cos θ. sec θ = ?
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.