हिंदी

If `Sqrt(3) Sin Theta = Cos Theta and Theta ` is an Acute Angle, Find the Value Of θ . - Mathematics

Advertisements
Advertisements

प्रश्न

If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .

उत्तर

We have ,

 `sqrt(3) sin theta = cos theta`

⇒ `sin theta/ cos theta = 1/ sqrt(3)`

⇒ `tan theta = 1/ sqrt(3)`

⇒  `tan theta = tan 30°`

∴ `theta = 30°`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 26

संबंधित प्रश्न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×