हिंदी

`Tan Theta /((1 - Cot Theta )) + Cot Theta /((1 - Tan Theta)) = (1+ Sec Theta Cosec Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`

उत्तर

LHS= `tan theta/((1-cot theta))+ cot theta/((1-tan theta))`

      =`tan theta/((1-cos theta/sin theta)) + cot theta/((1-sin theta/cos theta))`

     =`(sin theta tan theta)/((sin theta- cos theta))+(cos theta cot theta)/((cos theta - sin theta))`

    =`(sin  theta  xx (sin theta) / (cos theta) cos theta xx (cos theta) / (sin theta))/((sin theta - cos theta))`

   =`((sin ^2 theta  cos ^2 theta)/(cos theta   sin theta))/((sin theta-cos theta))`

   =`( sin ^3 theta - cos ^3 theta)/(cos theta sin theta (sin theta - cos theta))`

 =` ((sin theta - cos theta)(sin ^2 theta + sin theta cos theta + cos ^2theta ))/(cos theta sin theta (sin theta- costheta))`

 =`(1+ sin theta cos theta)/(cos theta sin theta)`

 =`1/(cos theta sin theta)+(sin theta cos theta)/(cos theta  sin theta)`

  =`1/(cos theta sin theta)+ (sin theta cos theta)/(cos theta sin theta)`

  =`sectheta cosec  theta +1` 

  =`1+ sec theta  cosec  theta`

  =RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 12

संबंधित प्रश्न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×