Advertisements
Advertisements
प्रश्न
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
उत्तर
LHS= `tan theta/((1-cot theta))+ cot theta/((1-tan theta))`
=`tan theta/((1-cos theta/sin theta)) + cot theta/((1-sin theta/cos theta))`
=`(sin theta tan theta)/((sin theta- cos theta))+(cos theta cot theta)/((cos theta - sin theta))`
=`(sin theta xx (sin theta) / (cos theta) cos theta xx (cos theta) / (sin theta))/((sin theta - cos theta))`
=`((sin ^2 theta cos ^2 theta)/(cos theta sin theta))/((sin theta-cos theta))`
=`( sin ^3 theta - cos ^3 theta)/(cos theta sin theta (sin theta - cos theta))`
=` ((sin theta - cos theta)(sin ^2 theta + sin theta cos theta + cos ^2theta ))/(cos theta sin theta (sin theta- costheta))`
=`(1+ sin theta cos theta)/(cos theta sin theta)`
=`1/(cos theta sin theta)+(sin theta cos theta)/(cos theta sin theta)`
=`1/(cos theta sin theta)+ (sin theta cos theta)/(cos theta sin theta)`
=`sectheta cosec theta +1`
=`1+ sec theta cosec theta`
=RHS
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α