हिंदी

Prove the following: cosec1+cot2α1+cosec α = cosec α - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α

योग

उत्तर

L.H.S = `1 + (cot^2 alpha)/(1 + "cosec"  alpha)`

= `1 + ((cos^2 alpha)/(sin^2 alpha))/((1 + 1)/(sin alpha))`  ...`[∵ cot theta = (cos theta)/(sin theta) "and"  "cosec"  theta = 1/sin theta]`

= `1 + (cos^2 alpha)/(sinalpha (1 + sin alpha))`

= `(sin alpha(1 + sin alpha) + cos^2 alpha)/(sin alpha(1 + sin alpha))`

= `(sin alpha + (sin^2 alpha + cos^2 alpha))/(sin alpha(1 + sin alpha)`  ...[∵ sin2θ + cos2θ = 1]

= `((sin alpha + 1))/(sin alpha(sin alpha + 1))` 

= `1/sinalpha` ...`[∵ "cosec"  theta = 1/sin theta]`

= cosec α 

= R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 6 | पृष्ठ ९५

संबंधित प्रश्न

Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If tan θ × A = sin θ, then A = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove that sin4A – cos4A = 1 – 2cos2A


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×