Advertisements
Advertisements
प्रश्न
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
उत्तर
L.H.S = `1 + (cot^2 alpha)/(1 + "cosec" alpha)`
= `1 + ((cos^2 alpha)/(sin^2 alpha))/((1 + 1)/(sin alpha))` ...`[∵ cot theta = (cos theta)/(sin theta) "and" "cosec" theta = 1/sin theta]`
= `1 + (cos^2 alpha)/(sinalpha (1 + sin alpha))`
= `(sin alpha(1 + sin alpha) + cos^2 alpha)/(sin alpha(1 + sin alpha))`
= `(sin alpha + (sin^2 alpha + cos^2 alpha))/(sin alpha(1 + sin alpha)` ...[∵ sin2θ + cos2θ = 1]
= `((sin alpha + 1))/(sin alpha(sin alpha + 1))`
= `1/sinalpha` ...`[∵ "cosec" theta = 1/sin theta]`
= cosec α
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan θ × A = sin θ, then A = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sin4A – cos4A = 1 – 2cos2A
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.