हिंदी

If sec θ = 257, find the value of tan θ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)

योग

उत्तर

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^2`

∴ tan2 θ = `625/49 - 1`

= `(625 - 49)/49`

= `576/49`

∴ tan θ = `24/7` ........(by taking square roots)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2019-2020 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Find the value of ( sin2 33° + sin2 57°).


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×