Advertisements
Advertisements
प्रश्न
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
उत्तर
L.H.S. = (sec A − tan A)2 (1 + sin A)
`(1/cos "A" - sin "A"/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")/cos "A")^2 (1 + sin "A")`
= `((1 - sin "A")(1 - sin "A")(1 + sin "A"))/cos^2"A"`
= `((1 - sin "A")(1 - sin^2 "A"))/cos^2"A"`
= `((1 - sin "A")cos^2"A")/cos^2"A"`
= (1 − sin A) R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1