Advertisements
Advertisements
प्रश्न
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
उत्तर
`4+4 tan^2 theta `
= `4(1+ tan ^2 theta)`
=`4 sec^2 theta `
=`4/ cos^2 theta`
=`4/(2/3)^2`
=`4/((4/9))`
=`(4xx9)/4`
=9
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Choose the correct alternative:
1 + tan2 θ = ?
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If tan θ = `13/12`, then cot θ = ?
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.