Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
1 + tan2 θ = ?
विकल्प
Sin2 θ
Sec2 θ
Cosec2 θ
Cot2 θ
उत्तर
sec2θ
Explanation:
1 + tan2θ = sec2θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of tan1° tan 2° ........ tan 89° .
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If cosθ = `5/13`, then find sinθ.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Choose the correct alternative:
sec2θ – tan2θ =?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ