Advertisements
Advertisements
प्रश्न
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
उत्तर
LHS = `(1+ tan theta + cot theta )(sintheta - cos theta) `
=` sin theta + tan theta sin theta + cot theta sin theta - cos theta - tan theta cos theta - cot theta cos theta `
=`sin theta + tan theta sin theta + cos theta/sin theta xx sin theta - cos theta -sin theta/cos thetaxx cos theta - cot theta cos theta`
=`sin theta + tan theta sin theta + cos theta - cos theta - sin theta - cot theta cos theta`
=`tan theta sin theta - cot theta cos theta`
=`sin theta / cos theta xx 1/( cosec theta) - cos theta / sin theta xx 1/ sec theta`
=` 1/ (cosec theta) xx 1/ ( cosec theta ) xx sec theta - 1/ sec theta xx 1/ sec theta xx cosec theta`
=` sec theta / ( cosec^2 theta) - (cosec theta)/sec^2 theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Choose the correct alternative:
cos θ. sec θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1