Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
उत्तर
R.H.S. = `tan^2A/(secA - 1)^2`
= `(sec^2A - 1)/(secA - 1)^2` ...[sec2θ – tan2θ = 1 sec2θ – 1 = tan2θ]
= `((secA + 1)(secA - 1))/(secA - 1)^2`
= `(secA + 1)/(secA - 1)`
= `(1/(cosA) + 1)/(1/cosA - 1)`
= `((1 + cosA)/cosA)/((1 - cosA)/(cosA))`
= `(1 + cosA)/(1 - cosA)`
R.H.S. = L.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
(secA + tanA) (1 − sinA) = ______.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If cos θ = `24/25`, then sin θ = ?