Advertisements
Advertisements
Question
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Solution
R.H.S. = `tan^2A/(secA - 1)^2`
= `(sec^2A - 1)/(secA - 1)^2` ...[sec2θ – tan2θ = 1 sec2θ – 1 = tan2θ]
= `((secA + 1)(secA - 1))/(secA - 1)^2`
= `(secA + 1)/(secA - 1)`
= `(1/(cosA) + 1)/(1/cosA - 1)`
= `((1 + cosA)/cosA)/((1 - cosA)/(cosA))`
= `(1 + cosA)/(1 - cosA)`
R.H.S. = L.H.S.
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that sin4A – cos4A = 1 – 2cos2A