Advertisements
Advertisements
Question
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Options
0
1
2
-1
none of these
Solution
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = 2.
Explanation:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
= `(1+ (sin theta)/(cos theta)+1/(costheta))(1+(costheta)/(sin theta)-1/(sin theta))`
= `((costheta+sintheta +1)/costheta)((sintheta+cos theta -1)/sintheta)`
= `((sintheta+costheta)^2-(1)^2)/(sinthetacostheta)`
= `(sin^2theta+cos^2 theta + 2sin theta cos theta -1)/(sinthetacostheta)`
= `(1+2sinthetacostheta -1)/(sinthetacostheta)`
= `(2sintheta costheta)/(sin theta costheta)`
= 2
Hence, alternative 2 is correct.
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Write the value of tan1° tan 2° ........ tan 89° .
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If `secθ = 25/7 ` then find tanθ.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If tan θ = `13/12`, then cot θ = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
If 2sin2θ – cos2θ = 2, then find the value of θ.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.