English

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______. - Mathematics

Advertisements
Advertisements

Question

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.

Options

  • 0

  • 1

  • 2

  • -1

  • none of these

MCQ
Fill in the Blanks

Solution

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = 2.

Explanation:

(1 + tan θ + sec θ) (1 + cot θ − cosec θ)

= `(1+ (sin theta)/(cos theta)+1/(costheta))(1+(costheta)/(sin theta)-1/(sin theta))`

= `((costheta+sintheta +1)/costheta)((sintheta+cos theta -1)/sintheta)`

= `((sintheta+costheta)^2-(1)^2)/(sinthetacostheta)`

= `(sin^2theta+cos^2 theta + 2sin theta cos theta -1)/(sinthetacostheta)`

= `(1+2sinthetacostheta -1)/(sinthetacostheta)`

= `(2sintheta costheta)/(sin theta costheta)`

= 2

Hence, alternative 2 is correct.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 4.2 | Page 193
Samacheer Kalvi Mathematics [English] Class 10 SSLC TN Board
Chapter 6 Trigonometry
Exercise 6.5 | Q 8 | Page 266
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 26 | Page 58

RELATED QUESTIONS

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Write the value of tan1° tan 2°   ........ tan 89° .


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


If `secθ = 25/7 ` then find tanθ.


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


If tan θ = `13/12`, then cot θ = ?


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


If 2sin2θ – cos2θ = 2, then find the value of θ.


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×