Advertisements
Advertisements
Question
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Solution
If is given that
x = h + a cos θ
and y = k + b sin θ
x - h = a cos θ ....(i)
y - k = b sin θ ....(ii)
The given equation is
`((x - h)/a)^2 + ((y - k)/(b))^2 = 1`
LHS = `((a cos θ)/a)^2 + ((b sin θ)/b)^2 ` ....(Putting the values of (i) and (ii)]
= cos2θ + sin2θ
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If 2sin2θ – cos2θ = 2, then find the value of θ.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.