English

If X = H + a Cos θ, Y = K + B Sin θ. Prove that ((X - H)/A)^2 + ((Y - K)/B)^2 = 1 - Mathematics

Advertisements
Advertisements

Question

If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.

Sum

Solution

If is given that
x = h + a cos θ
and y = k + b sin θ

x - h = a cos θ           ....(i)
y - k = b sin θ           ....(ii)
The given equation is

`((x - h)/a)^2 + ((y - k)/(b))^2 = 1`

LHS = `((a cos θ)/a)^2 + ((b sin θ)/b)^2 `     ....(Putting the values of (i) and (ii)]

= cos2θ + sin2θ 
= 1 
= RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 58
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×