Advertisements
Advertisements
Question
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Solution
LHS = sec2A + sec2B
= `1/(cos^2A) + 1/(cos^2 B)`
= `1/(cos^2A) + 1/(cos^2(90° - A))`
= `1/(cos^2 A) + 1/(sin^2 A)`
= `1/( sin^ A. cos^2 A)`
= sec2 A cosec2 A
= sec2 A cosec2 (90° - B)
= sec2A. sec2 B = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If sec θ = `25/7`, then find the value of tan θ.
If cosθ = `5/13`, then find sinθ.
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Choose the correct alternative:
cot θ . tan θ = ?
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α