Advertisements
Advertisements
Question
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Solution
LHS = 2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1
Simplifying the expression 2(sin6θ + cos6θ) - 3(sin4θ + cos4) we have,
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ)
= 2sin6θ + 2cos6θ - 3sin4θ - 3cos4θ
= (2sin6θ - 3sin4θ) + (2cos6θ - 3cos4θ)
= sin4θ(2sin2θ - 3) + cos4θ(2cos2θ - 3)
= sin4θ{2( 1 - cos2θ) - 3} + cos4θ{ 2( 1 - sin2θ) - 3}
= sin4θ( 2 - 2cos2θ - 3) + cos4θ( 2 - 2sin2θ - 3)
= sin4θ( -1 - 2cos2θ) + cos4θ( - 1 - 2sin2θ)
= - sin4θ - 2sin4θcos2θ - cos4θ - 2cos4θsin2θ
= - sin4θ - cos4θ - 2cos4θsin2θ - 2sin4θcos2θ
= - sin4θ - cos4θ - 2cos2θsin2θ( cos2θ + sin2θ )
= - sin4θ - cos4θ - 2cos2θsin2θ(1)
= - sin4θ - cos4θ - 2cos2θsin2θ
= - (sin4θ + cos4θ + 2cos2θsin2θ)
= - {(sin2θ)2 + (cos2θ)2 + 2sin2θcos2θ }
= - (sin2θ + cos2θ)2
= - (1)2
= - 1
2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1 = −1 + 1 = 0 = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Simplify : 2 sin30 + 3 tan45.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`