Advertisements
Advertisements
Question
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Solution
L.H.S. = `tanA/(1 - cotA) + cotA/(1 - tanA)`
= `tanA/(1 - 1/tanA) + (1/tanA)/(1 - tanA)`
= `tan^2A/(tanA - 1) + 1/(tanA(1 - tanA))`
= `(tan^3A - 1)/(tanA(1 - tanA))`
= `((tanA - 1)(tan^2A + 1 + tanA))/(tanA(tanA - 1)`
= `(sec^2A + tanA)/tanA`
= `(1/cos^2A)/(sinA/cosA) + 1`
= `1/(sinAcosA) + 1`
= sec A cosec A + 1 = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1