Advertisements
Advertisements
Question
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Solution
L.H.S. = `(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2`
= `(sinA/cosA + 1/cosA)^2 + (sinA/cosA - 1/cosA)^2`
= `((sinA + 1)/cosA)^2 + ((sinA - 1)/cosA)^2`
= `(sinA + 1)^2/(cos^2A) + (sinA - 1)^2/(cos^2A)`
= `((sinA + 1)^2 + (sinA - 1)^2)/(cos^2A)`
= `(sin^2A + 1 + 2sinA + sin^2A + 1 - 2sinA)/cos^2A`
= `(2sin^2A + 2)/(cos^2A)`
= `(2(1 + sin^2A))/(1 - sin^2A)`
= `2((1 + sin^2A)/(1 - sin^2A))` = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.