Advertisements
Advertisements
Question
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Solution
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))`
= `sqrt((1 + sinq)/(1 - sinq) . (1+ sinq)/(1 + sinq)) + sqrt((1 - sinq)/(1 + sinq) . (1 - sinq)/(1 - sinq))`
= `sqrt((1 + sinq)^2/(1 - sin^2q)` + `sqrt((1 - sinq)^2/(1 - sin^2q))` = `sqrt((1 + sinq)^2/cos^2q)` + `sqrt((1 - sinq)^2/cos^2q)`
= `(1 + sinq)/cosq + (1 - sinq)/cosq = (1 + sinq + 1 - sinq)/cosq` = `2/cosq`
= 2 secq
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
tan θ × `sqrt(1 - sin^2 θ)` is equal to: