Advertisements
Advertisements
Question
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Solution
= LHS = `sqrt((1 - cosA)/(1 - cosA))`
= `sqrt((1 - cosA)/(1 + cosA) . (1 + cosA)/(1 + cosA))`
= `sqrt((1 - cos^2A)/(1 + cosA)^2)`
= `sqrt(sin^2A/(1 + cosA)^2)`
= `sinA/(1 + cosA)`
APPEARS IN
RELATED QUESTIONS
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If cosA + cos2A = 1, then sin2A + sin4A = 1.
(1 – cos2 A) is equal to ______.