Advertisements
Advertisements
Question
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Solution
LHS = `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
= `tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
= `sin A/cos A xx cos^2 A xx cos^2 A + cos A/sin A xx sin^2 A xx sin^2 A`
= sin A.cos3A + sin3A.cos A
= sin A cos A (cos2 A + sin2 A)
= sin A. cos A x 1
= sin A. cos A
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
tan (90 – θ) = ?