Advertisements
Advertisements
Question
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Solution
Given , m = a secA + b tanA and n = a tanA + b secA
`m^2 - n^2 = (asecA + btanA)^2 - (atanA + bsecA)^2`
⇒ `a^2sec^2A + b^2tan^2A + 2ab secAtanA - (a^2tan^2A + b^2 sec^2A + 2ab secAtanA)`
⇒ `sec^2A(a^2 - b^2) + tan^2A(b^2 - a^2) = (a^2 - b^2) [sec^2A - tan^2A]`
⇒ `(a^2 - b^2) ["Since" sec^2A - tan^2A = 1]`
Hence , `m^2 - n^2 = a^2 - b^2`
APPEARS IN
RELATED QUESTIONS
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`