Advertisements
Advertisements
प्रश्न
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
उत्तर
Given , m = a secA + b tanA and n = a tanA + b secA
`m^2 - n^2 = (asecA + btanA)^2 - (atanA + bsecA)^2`
⇒ `a^2sec^2A + b^2tan^2A + 2ab secAtanA - (a^2tan^2A + b^2 sec^2A + 2ab secAtanA)`
⇒ `sec^2A(a^2 - b^2) + tan^2A(b^2 - a^2) = (a^2 - b^2) [sec^2A - tan^2A]`
⇒ `(a^2 - b^2) ["Since" sec^2A - tan^2A = 1]`
Hence , `m^2 - n^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B