Advertisements
Advertisements
प्रश्न
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
उत्तर
Given , m = a secA + b tanA and n = a tanA + b secA
`m^2 - n^2 = (asecA + btanA)^2 - (atanA + bsecA)^2`
⇒ `a^2sec^2A + b^2tan^2A + 2ab secAtanA - (a^2tan^2A + b^2 sec^2A + 2ab secAtanA)`
⇒ `sec^2A(a^2 - b^2) + tan^2A(b^2 - a^2) = (a^2 - b^2) [sec^2A - tan^2A]`
⇒ `(a^2 - b^2) ["Since" sec^2A - tan^2A = 1]`
Hence , `m^2 - n^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.