हिंदी

If M = a Seca + B Tana and N = a Tana + B Seca , Prove that M2 - N2 = A2 - B2 - Mathematics

Advertisements
Advertisements

प्रश्न

If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2

योग

उत्तर

Given , m = a secA + b tanA and n = a tanA + b secA

`m^2 - n^2 = (asecA + btanA)^2 - (atanA + bsecA)^2`

⇒ `a^2sec^2A + b^2tan^2A + 2ab secAtanA - (a^2tan^2A + b^2 sec^2A + 2ab secAtanA)`

⇒ `sec^2A(a^2 - b^2) + tan^2A(b^2 - a^2) = (a^2 - b^2) [sec^2A - tan^2A]`

⇒ `(a^2 - b^2) ["Since"    sec^2A - tan^2A = 1]`

Hence , `m^2 - n^2 = a^2 - b^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 21: Trigonometric Identities - Exercise 21.2

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 21 Trigonometric Identities
Exercise 21.2 | Q 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×