Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
उत्तर
LHS = `(cot^2θ(secθ - 1))/((1 + sinθ)) `
= `(cot^2θ(secθ - 1)(1 - sinθ)(secθ + 1))/((1 + sinθ)(1 - sinθ)(secθ + 1))`
= `(cot^2θ(secθ - 1)(secθ + 1)(1 - sinθ))/((1 + sinθ)(1 - sinθ)(secθ + 1))`
= `(cot^2θ(sec^2θ - 1)(1 - sinθ))/((1 - sin^2θ)(1 + secθ))`
= `(cot^2θ(tan^2θ)(1 - sinθ))/((cos^2θ)(1 + secθ))` (∵ `tan^2θ = sec^2θ - 1,1 - sin^2θ = cos^2θ`)
= `((cotθtanθ)^2(1 - sinθ))/((cos^2θ)(1 + secθ))`
= `(1(1 - sinθ))/((cos^2θ)(1 + secθ))` (∵ cotθtanθ = 1)
= `sec^2θ((1 - sinθ)/(1 + secθ))`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
(i)` (1-cos^2 theta )cosec^2theta = 1`
sec4 A − sec2 A is equal to
Choose the correct alternative:
1 + cot2θ = ?
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.