Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
उत्तर
`Given that
`x = a sec theta + b tan theta`
`y = a ta theta + b sec theta`
We have to prove `x^2 - y^2 = a^2 - b^2`
We know that `sec^2 theta - tan^2 theta = 1`
So,
`x^2 - y^2`
`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`
`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta + 2 ab sec theta tan theta + b^2 + sec^2 theta)`
`= a^2 (sec^2 theta - tan^2 theta) - b^2 (sec^2 theta - tan^2 theta)`
`= a^2 - b^2 `
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Simplify : 2 sin30 + 3 tan45.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Find the value of sin 30° + cos 60°.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
(1 + sin A)(1 – sin A) is equal to ______.