हिंदी

Prove the Following Trigonometric Identities If X = A Sec θ + B Tan θ And Y = A Tan θ + B Sec θ, Prove That X2 − Y2 = A2 − B2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2

उत्तर

`Given that

`x = a sec theta + b tan theta`

`y = a ta theta +  b sec theta`

We have to prove  `x^2 - y^2 = a^2 - b^2`

We know that `sec^2 theta - tan^2 theta  = 1`

So,

`x^2 - y^2`

`= (a sec theta + b tan theta)^2 - (a tan theta + b sec theta)^2`

`= (a^2 sec^2 theta + 2 ab sec theta + b^2 tan^2 theta) - (a^2 tan^2 theta +  2 ab sec theta tan theta + b^2 + sec^2 theta)`

`= a^2 (sec^2 theta  -  tan^2 theta) - b^2 (sec^2 theta -  tan^2 theta)`

`= a^2 - b^2 `

Hence proved. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 74 | पृष्ठ ४६

संबंधित प्रश्न

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Simplify : 2 sin30 + 3 tan45.


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Find the value of sin 30° + cos 60°.


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×